EC-KitY: Evolutionary computation tool kit in Python with seamless machine learning integration

نویسندگان

چکیده

EC-KitY is a comprehensive Python library for doing evolutionary computation (EC), licensed under the BSD 3-Clause License, and compatible with scikit-learn. Designed modern software engineering machine learning integration in mind, can support all popular EC paradigms, including genetic algorithms, programming, coevolution, multi-objective optimization, more. This paper provides an overview of package, ease setting up experiment, architecture, main features, comparison other libraries.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mlpy: Machine Learning Python

mlpy is a Python Open Source Machine Learning library built on top of NumPy/SciPy and the GNU Scientific Libraries. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Py...

متن کامل

Combining Machine Learning with Evolutionary Computation: Recent Results on LEM

The Learnable Evolution Model (LEM), first presented at the Fourth International Workshop on Multistrategy Learning, employs machine learing to guide evolutionary computation . Specifically, LEM integrates two modes of operation: Machine Learning mode, which employs a machine learning algorithm, and Darwinian Evolution mode, which employs a conventional evolutionary algorithm. The central new i...

متن کامل

Scikit-learn: Machine Learning in Python

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distrib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SoftwareX

سال: 2023

ISSN: ['2352-7110']

DOI: https://doi.org/10.1016/j.softx.2023.101381